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Abstract 
A detailed X-ray study of HOPG reveals extensive 
wings on the 00.1 Bragg reflections whose width in a 
scan normal to 00.l is comparable to the mosaic 
spread. These wings, which are absent in single- 
crystal profiles, are attributed to rotational or twist 
(T) defects between perfect substacks of pyrolyzed 
graphite. Along 11.1, the twists destroy coherence and 
produce an effective 'particle-size' broadening. The 
average substack size, or spacing between T defects, 
is estimated through profile fitting to be about 110 A,. 
The lateral extent of T defects is comparable to a 
mosaic-block size. 

I. Introduction 
This study originated with our observations, summar- 
ized in Fig. 1, of substantial symmetrical wings on 
the 00.1 reflections both in pure HOPG and in stage 
2 alkali-graphite intercalation compounds (GIC's), 
denoted approximately by C~2,M, where M = K, Rb, 
Cs and n = stage index (Dresselhaus & Dresselhaus, 
1981). The scans in Fig. 1 were taken at the Cornell 
High Energy Synchrotron Source (CHESS) and are 
over comparable scattering angles, 20, to place them 
on the same instrumental basis with respect to slits. 
While the HOPG 30.0 reflection is extremely sharp 
and shows no wings, the 00.5 clearly has extensive 
tails along L (hk. l are hexagonal Miller indices, HK. L 
take on continuous values where L = I at a 00.1 Bragg 
peak). These wings are enhanced when a HOPG 
sample is intercalated- in this case to stage 2 with 
potassium. In the present paper we confine our atten- 
tion to an analysis of the pure HOPG sample. A 
corresponding analysis of intercalated samples is in 
preparation. 

As Moore (1973) discusses in his review of the 
structure and properties of pyrolytic graphite, 
graphite prepared by pyrolysis comes in varying 
degrees of perfection and has been studied and 
characterized rather extensively. Since Warren (1941) 
began with a random-layer lattice model for truly 
disordered (turbostratic) carbon, graphites have been 
shown to possess increasing degrees of stacking order 
with increasingly extended layer dimensions as their 
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perfection increases. Particularly important in the 
X-ray treatments are the papers of Franklin (1951) 
and the summary of Maire & M6ring (1970) who give 
an excellent discussion of the diffraction effects to be 
expected in the graphitization of soft carbons. 
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Fig. 1. Bragg reflection profiles taken at the Comell High Energy 

Synchrotron Source (CHESS) on HOP(3 (a) and (b) and HOP(3 
intercalated to C24K (c). Note the extensive wings on the 00.1 
reflections, (b) and (c), that are absent on h0.0, (a). 
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The sequence of structures that emerges from the 
work of Warren (1941), Biscoe & Warren (1942), 
Franklin (1951), Bacon (1951), Ergun (1968) and 
Maire & M6ring (1970) includes the following: The 
most disordered samples are rotationally and/or  
translationally uncorrelated and consist of randomly 
stacked hexagonal graphite net planes of quite limited 
lateral extent. As the order increases with the tem- 
perature of preparation, the layers become larger and 
orient to form substacks of coherently diffracting 
graphite which are separated by random rotations. 
Each crystal block in a pyrolytic graphite mosaic 
distribution is composed of these substacks. The layer 
spacin~ of the oriented material within a substack is 
3.354 A while the spacing between completely dis- 
oriented layers (as in turbostratic carbon) is 3.44/~. 
As the graphitization becomes more complete, the 
frequency of occurrence of a spacing of 3.44/~ con- 
siderably diminishes and the substack size increases 
along L. 

Actually, however, as the graphites become more 
perfect the existence of only two layer spacings 
becomes more problematical. Maire & M6ring (1970) 
note that a rotationally disoriented layer, possessing 
a spacing different from the ideal, comes about from 
interstitial carbon atoms protruding into the van der 
Waals gap of the pyrolyzed graphite. If both layers 
contain these protruding carbons in sufficient num- 
bers, the spacing will be 3.44/~; if only one does, the 
spacing will be (3.44 A+3.354/~) /2 ;  and if neither 
contains them, the spacing will be 3.354/~. This pic- 
ture is further modified by Maire & M6ring (1970) 
by placing distribution functions about the two 
expanded spacings. 

As the graphitization improves, the frequency of 
occurrence of layers with discrete expanded spacings 
decreases dramatically. However, it still remains use- 
ful to consider well oriented graphite, prepared by 
pyrolysis, as composed of coherent substacks of large 
lateral extent, distributed along the common c axis 
with small random twists. These twists, or T defects 
as they are called by Maire & M6ring (1970), arise, 
as noted, because of the existence of layers with 
protruding or interstitial carbon atoms. If the lateral 
(planar) extent of the oriented substacks is large, even 
a small twist will act to destroy correlations across 
the boundary between substacks along the c axis. 

In diffraction terms, this loss of correlation means 
that the T defects will effectively broaden the scatter- 
ing function along L for hk.l reflections in exactly 
the same fashion as a distribution of small (flat) 
particles and it will be identical for every hk.l point. 
For the 00.1 reflections, however, the diffraction 
effects are basically those from a layer lattice with a 
distribution of one-dimensional errors in spacing. The 
paper of Hendricks & Teller (1942) is quite useful in 
analyzing such situations and has been extensively 
applied by Franklin (1951), Bacon (1951) and Maire 

& M6ring (1970). The result for the 00.L scans is the 
loss of 8-function Bragg reflections which are 
replaced by a continuous scattering function which 
peaks roughly at the nominal reciprocal-lattice points 
(L = l) but whose 'breadth' increases with increasing 
/. When the defect density and spacing variation are 
both quite small, the peaks tend to look like Bragg 
reflections with extended tails, as in Fig. 1. 

II. Experimental results 

Fig. 1 shows the basic qualitative features of the 00.L 
wings that we wish to analyze: namely, that they are 
essentially symmetrical, that they are not present in 
hk;0 scans, and that they are enhanced on intercala- 
tion. Because intercalation also introduces staging 
disorder (Misenheimer & Zabel, 1985), we defer dis- 
cussion of Fig. l(c) to a later date. Fig. 2 presents 
data taken in our laboratory using a sealed (Cu) tube 
diffractometer operated at a maximum of 40 kV and 
30 mA with a pre-sample curved Ge(111) asymmetri- 
cally cut Johannson monochromator. The mono- 
chromator-slit arrangement gave us a symmetrical 
Cu Kal incident beam with a narrow combined 
incident-diffracted beam divergence of ---0.05 ° in 0 
as measured at 11.0. Fig. 2(a) is an uncorrected (raw) 
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Fig. 2. (a) Laboratory (sealed tube) Cu Koq X-ray scan along L 
through several 00.1 reflections from HOPG where qL=q, the 
diffraction vector whose magnitude IqLI =49 sin 0/A, and c = 
3.354 A. (b) Detailed 00.3 profile, taken on a laboratory source 
as in (a), showing a narrow peak and no Cu Kot  2 line. 
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00.L scan in which the shape of the Bragg profiles 
over a large scan range is shown. (The l index in 
these scans refers to 1/c where c-~3.354A. For the 
normal AB stacking of graphite, c is actually 2 x 
3.354/~ and this spacing is used on hk.l indexing.) 
Without further analysis one might be tempted to 
assign the profile in Fig. 2(a) to thermal diffuse scat- 
tering (TDS), although for graphite that is unlikely 
because of the high Debye temperatures for both 
c-axis and basal plane vibrations (Chen & Trucano, 
1978). Fig. 2(b) presents the 00.3 Bragg profile to 
emphasize the essentially symmetrical character of 
the reflection and its narrow width. If we take the 
full width at half maximum (FWHM = Aq,/2) of this 
reflection we see that it is nearly resolution limited 
[Aq,/2= (27r/c)AL,/2=0.009/~,- '] .  The coherent 
particle size along the c axis, determined from such 
a 00.1 width, is thus extremely large when the instru- 
mental width is removed. 

Fig. 3 presents to scans of the HOPG 00.3 reflection 
and the 00.2 reflection of a graphite single crystal that 
we shall use for comparison. Fig. 3(a) indicates a 
mosaic spread of about 0.5 ° FWHM for our HOPG 
sample, which was supplied by Dr A. W. Moore. The 
natural graphite crystal, provided by Dr C. J. Sparks, 
shows basically two narrow distributions, each of 
about 0.1-0.2 ° width and sitting on a broader distribu- 
tion whose entire spread is of order 1 °. 
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Fig. 3. (a) to scan of the HOPG 00.3 reflection showing a FWHM 
of about 0.5°; the cut-off at large to was inadvertent but the 
profile is smooth over the whole range. (b) to scan of the 00.2 
reflection from a natural graphite single-crystal flake. 

Fig. 4 compares these two samples in what is re- 
ferred to as an HK scan. For HOPG this entails 
scanning at fixed L (~ l) in a direction normal to the 
c direction. Because HOPG is cylindrically averaged 
about c, the notation 'HK '  is used. The units are such 
that HK = 1.0 when the diffraction vector touches the 
10.L rod at any value of L. Fig. 4(a) shows that the 
wing of the Bragg peak near 00.1 is really a narrow 
ridge of intensity sitting on a background of TDS and 
Compton scattering. To facilitate our analysis of this 
ridge, we made a polynomial fit to the background 
and that is shown as the solid line in Fig. 4(a). The 
extent of the ridges in HK, normal to e*, is essentially 
given by the mosaic spread. The comparable single- 
crystal HK scan in Fig. 4(b) has a background fit by 
the same polynomial as Fig. 4(a) and there is clearly 
no ridge. This result establishes the pronounced wings 
in HOPG along an L scan as due to defects peculiar 
to HOPG which are absent in the natural single 
crystal. Because the wings are really narrow ridges, 
the lateral extent of the defects is comparable to the 
lateral dimension of the layers in a diffracting block 
or substack. 

Fig. 5 presents a series of HK scans at various 
values of L showing that the ridge remains narrow, 
normal to e*, as the intensity falls off. Estimating 
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Fig. 4. HK scans normal to the c* direction at L= 1.03, where 
qnr+qL=q and q~K+q2L=q2=(41rsinO/A)2: (a) HOPG, 
showing a ridge on top of the thermal and Compton background. 
(b) Single crystal (of Fig. 3b) showing no ridge. The solid curve 
is identical for both and is a polynomial fit to the background 
in (a) which is applied to (b). 
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background at L = I - 1 0  and L = l . 1 5  becomes 
increasingly difficult and the polynomial fits at these 
two L values are probably in error. (At L = 1.10 the 
background rises in an unphysical way at H K  = O. 
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Fig. 5. HOPG H K  scans at selected values of L near the 00.1 
reflection showing the ridge of  diffuse intensity above the fitted 
background (solid curves). 

We have not corrected for this, however, leaving all 
background estimates as systematically determined.) 

Fig. 6 shows L scans for the 11.2 and 11.4 reflections 
together with, in Fig. 6(a), a theoretical profile to be 
discussed and, in Figs. 6(a) and 6(b), theoretical total 
fits involving a convolution of the theoretical profile 
with the experimentally determined instrumental 
broadening. While we defer detailed comment on 
these to the next section, two experimental aspects 
are noteworthy. The first is that scans along L at 11.I 
will contain a broadening contribution due to the 
mosaic spread of the sample. For example, at 11.0 
an L scan is nearly identical to an ~o scan. One must 
be quite careful, therefore, in assigning crystallite 
dimensions to L scans. The second point to be noted 
is that, given the above caution, these 11.1 profiles 
remain considerably broader than the comparable 
00.I profiles. It is this fact which is essential in the 
assignment of a model for HOPG in which we have 
one-dimensional disorder along 00.L, characterized 
by the spacing error(s) introduced by the T defects; 
along 11.L, on the other hand, we have profiles deter- 
mined by the average dimension of the coherently 
diffracting substacks between the T defects which, 
by their nature, destroy coherence along L for hk . l  
reflections. 
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Fig. 6. Scans at 11.2 and 11.4 along L in which the squares are 
data points and the solid curves are a fit to theory, shown as a 
dashed curve at 11.2, convoluted with the instrumental profile 
as described in the text. 
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IlL Theory and data analysis expand (3). Let 

As the T defect is a one-dimensional defect, the ~_oo(x-g)2h(x)dx. Then 
Hendricks-Teller (1942) theory is well suited to our oo 
purpose. Graphite also contains stacking faults which ~ exp (i2"trSx)h(x) dx 

--OO 

give rise to L-dependent broadening in hk.L bands 
with h - k ~ 3m, but which have no effect on the 00.L 
and hk.L ( h -  k = 3m) bands. We therefore concen- 
trate on 00.L and l l .L bands in order to avoid the 
difficulty of distinguishing the influence of T defects 
from stacking-fault effects. 

~=~ooxh(x) dx, 82= 

co 

=exp (i2zrS~) ~ exp [i27rS(x-~)]h(x) dx 
--OO 

/ / -~exp(i2zrS:~) 1-½ ~ [2¢rS(x-~)]2h(x)dx 
- -oo 

A. O0.L band 

The intensity per layer as given by Hendricks & 
Teller (1942) is 

"" exp (i21rS~ - 2"/r2S2t~2). 
p(S) now takes on the simple form p ( S ) =  
exp(-2"n'2S282), tp(S)=2"n'S~. The final intensity 
formula used to fit our data can then be written as 

N - 1  N - I  

IN(S)/N= 1/N • Y. (fof*o exp[i(~0,-tpm)]), 
n = 0  m = 0  

(1) 

where N is the total number of layers, fo is the layer 
form factor, which is a multple of the atomic form 
factor for carbon, and ~on is the phase factor of 
the nth layer: ~o,,=27rSx,, with S = 2 s i n  0/h, and 
x, is equal to the distance between the nth and oth 
layers. 

We assume that the T defects are distributed ran- 
domly, in which case the spacing between any pair 
of nearest-neighbor layers can be represented by a 
distribution function h(x) [~o h(x)dx= 1]. Let N ~  
oo; (1) then becomes 

Ip(S)= lim IN(S)/N 
N--~oo 

=fg(2  Re {(exp (i~1))/[ 1 - ( exp  (i~o,))]} + 1) 

-- fo2[ 1 - o2(S) ]/[  1 + p2(S) - 2o(S) cos ~o(S)] 

(2) 

where 

p(S) exp [ i~o(S)] = (exp (i~0,)) 

oo 

= ~ exp(i27rSx)h(x)dx 
--00 

(3) 

and p(S), ~o(S) are real. 
For a specific known function for h(x), p(S) and 

~0 (S) can be evaluated. Equation (3) can be simplified 
further by realizing that the spacing associated with 
a T defect is only slightly larger than the normal 
c-axis interplanar spacing, and we can therefore 

I( S) = CAPLF exp ( - 2 M ) f  2 

x [ 1 - p2(S)]/[ 1 + p2 (S ) -  2p(S) cos ~(S)],  

(4) 

where C is a scaling constant, A is the absorption 
factor = 1 - e x p  (-2/zt /s in 0), P is the polarization 
factor = 1 + cos 2 2 0 cos 2 2 0m, 0,, = monochromator 
angle, exp ( - 2 M )  is the Debye-Waller factor (Chen 
& Trucano, 1978), fc  is the carbon scattering factor 
(International Tables for X-ray Crystallography, 1974), 
and LF is the Lorentz factor. 

For the absorption coefficient, /zt was experi- 
mentally determined. In order to subtract the back- 
ground (TDS + Compton) before a comparison with 
(4) could be made, we took a set of IlK scans across 
a 00.L band, as indicated in Fig. 5, from which we 
obtained two related sets of data: (a) the peak height 
of the ridge above background, and (b) the area under 
the ridge above the background; these are shown in 
Fig. 7. 

The combined Lorentz factor and slit function 
along L for this sample was difficult to evaluate 
exactly. The scattering is diffuse along L but confined 
to the mosaic ridge and both horizontal- and vertical- 
divergence corrections are necessary along with the 
true Lorentz factor. [None of these is necessary for 
thermal diffuse scattering as long as it is not too 
sharply varying.] We found for the values of peak 
intensity (Fig. 7a) along L at HK = 0 that a simple 
1/sin 20 factor enabled us to place the data about 
00.1 and 00.2 on the same scale for theoretical com- 
parison. Because this was a rather empirical choice 
we also compared the integration under the ridge in 
Fig. 7(b). If LF in Fig. 7(a) is I/sin 20, the scans in 
Fig. 7(b), taken at constant steps in HK, will 
automatically have an angular (geometric) 'Lorentz 
factor' of 1/cos O. The agreement between the two 
ways of plotting the results in Fig. 7 lends credence 
to our initial choice. 

The fits in Fig. 7 to (4) are thus identical except 
for the value of LF. They are placed on an absolute 
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scale by normalizing at one point. The only variable 
is the value of 6 which is found by a visual best fit 
to be 6 = 0.008 (1)/~ (~ is given by the c-lattice par- 
ameter). The very small value of 6 may be compared 
with the c-axis root mean square amplitude of thermal 
vibration, (/!.62) 1/2= (Bc/87r2) 1/2= 0"12/~, as reported 
by Chen & Trucano (1978). The one-dimensional 
static fluctuation is almost two orders of magnitude 
smaller than the thermal amplitude; we shall discuss 
its interpretation presently. 

B. l l .L  band 
Since the structure inside a substack is regular, the 

intensity per layer from one such substack with N 
layers is 

IN( L)/ N 

= f  l + 2 R e  ~, [(N-n)/N]exp(iL,a'n) . 
n = l  

The total intensity is then the sum of the intensities 
from all substacks. Let aN be the weight fraction of 
substacks with N layers (Y.~=~ aN = 1). Following a 
treatment similar to Maire & M6ring (1970), we may 
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Fig. 7. Plots of data (squares) against theory (solid line) in equation 
(4) with the Lorentz factor LF consistently chosen to give the 
peak intensity (a) and integrated intensity (b) in the 00.1 ridges 
above background. For the best fit 8 =0.008 (1)/~. 

write 

Ip(L) =/tota,(L)/Ntota, 
oO 

= E aNIN(L)/N 
n = l  

= f  l + 2 R e  Y'. fln exp ( iL,a'n ) , 
r l = l  

where 

/3.= ~ aN(N-n)/N. 
N = n + l  

Let P be the probability of finding a T defect between 
any nearest-neighbour pair and P~ = 1 - P. Then 

aN=[(1-p,)E/p,]NP~, f l .= P'~. 
Therefore 

Ip(L)=f2( l +2 Re {n~= [Pl exp (iLzr)]n}) 

=T2(1-p2)/[1 + P~-2P1 cos (¢rL)]. (5) 
This expression can also be found in Franklin (1951) 
and Bacon (1951) for the evaluation of hk.l profiles 
along L. Notice that (5) is periodic along L which 
means that all 11.1 peaks have the same shape and 
width once the broadening due to finite instrumental 
resultion combined with the mosaic spread of the 
sample is accounted for. Fig. 8 depicts the particular 
experimental diffraction situation appropriate to 
HOPG with a modest mosaic spread. The total broad- 
ening was assumed to be Gaussian with a width 
determined in the following way. 

First, we took radial scans across the 11.2 and 11.4 
peaks and found the profiles to be essentially 
Gaussian. From this we obtained the radial width WR 

O0.L ~ 11 .L 

S ~  ;~.~4 radial 

00.0 HK.O 
Fig. 8. Reciprocal-lattice geometry for l l .L  scans incorporating 

both mosaic spread (denoted by the arc normal to the radial 
vector) and the usual volume element sketched in detail, dR is 
an effective width for a radial (0-20) scan which gives rise to 
dL in the L Scan. 
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of the Gaussian curve. The widths WL in the l l . L  
scans are derived from WR by noting that if there is 
no T defect the intensity distribution of a 11.1 peak 
in reciprocal space is a (mosaic) arc across the central 
11.1 position as in Fig. 8. The small rhombi in Fig. 8 
show the instrumental resolution volume projected 
onto the plane. 

If we now take two scans - one, as above, through 
the 11.1 peak radially, the other through the peak in 
the L d i r ec t ion -bo th  scans will have an approxi- 
mately Gaussian profile. In both scans, when the 
upper fight comer  of the rhombus touches the mosaic 
arc the intensity begins to build up, gradually reaching 
a maximum as the rhombus moves outwards, and 
then drops back to zero again when the lower left 
comer touches the arc. 

The total distance travelled by the center of the 
rhombus during this process will be denoted as dR 
or dL in radial or l l . L  scans respectively. From the 
geometry, it is clear that dL/dR = 1/sin a. dL and dR 
are directly related to the width of the Gaussian 
curves. But before we can establish a relation between 
the two widths, WL and WR, it must be noted that 
the intensity along the mosaic arc falls from the 
central point in Fig. 3(a). While both corners of the 
rhombus meet the arc at the central point in a radial 
scan, they touch the arc at positions away from this 
maximum in a l l .L scan. Thus the intensity drops 
faster in a 11.L scan than in a radial scan, and the 
ratio of two widths, WL/WR, is less than the ratio 
dr/dR. From our data we take WL/WR = 3(dL/dR)= 
3/(4 sin a )  in our fitting. Finally, we have WL = 
3 WR/(4 sin a) .  

After this broadening correction is determined, its 
convolution with (5) may be performed to compare 
with the peak or integrated ridge data. Fig. 6 shows 
the 11.2 and 11.4 experimental peaks together with 
the theoretical result convoluted with the broadening 
function. We also include the theoretical part of (5) 
separately in Fig. 6(a) to show its shape and relative 
width. The best fit, again chosen visually, is not perfect 
because the mosaic distribution cannot be represen- 
ted so simply. But it is equally good at 11.2 and 11.4 
and yields a PI = 0.97. Thus, P = 1 - PI = 0.03, which 
means that there exists one T defect in about every 
33 layers and that the coherent block size may be 
estimated to be 33 x3.35 A---110(20)A.  

C. Thermal and Compton background 

We also tried to fit the background data obtained 
from the same set of HK scans that were summarized 
in Fig. 5. The solid curve in Fig. 9 is obtained by 
plotting first-order TDS and Compton scattering plus 
an extra constant background term. The expressions 
we employed are: 

/background -- ITDSt d- Icompto n + constant, 

where 

ITDS, = f  2 exp (-2M)4rr2NkBT SI2pA/ 2 mCCOg, L (6) 

lcompton = NFc(S)PA. (7) 

P and A are polarization and absorption factors 
respectively and mc is the mass of a carbon atom. In 
(6) the Debye-Waller  factor is evaluated using the 
c-axis thermal parameter of Chen & Trucano (1978) 
and the carbon scattering factor comes, as before, 
from International Tables for X-ray Crystallography 
(1974). The phonon frequencies O)g,L refer to the longi- 
tudinal (c-axis) vibrations where g = 2 r r S + q L ,  the 
phonon wave vector. The values for %,L were 
obtained from Nicklow, Wakabayashi & Smith 
(1972). 

Fc( S) in (7) is from International Tables for X-ray 
Crystallography (1974). The constant-background 
term originates in multiple elastic and inelastic scat- 
tering becuase of the high transparency of the sample. 
Rather than attempt to estimate multiple scattering, 
we assigned a constant level to this contribution and 
could then obtain the satisfactory fit in Fig. 9 by fixing 
only one point of theory to experiment as a normaliz- 
ation. 

IV. Discussion 

We have shown that the T-defect model proposed by 
Maire & Mrring (1970) for partially graphitized car- 
bon remains meaningful in these highly oriented 
pyrolytic graphites for which the coherent block size 
in our particular sample is roughly 110/~. (We would 
expect it to be similar in similarly treated samples.) 

According to Maire & Mrfing (1970), each face of 
a graphite layer can be in either an a or a /3  state. 
The/3 state is that of the face of a perfect graphite 
layer, while the a state pertains to a face which has 
interstitial carbons grafted onto it. The perfectly 
ordered arrangement between layers is possible only 
for /3-/3 contact; otherwise there is a T defect, as 
mentioned in the Introduction. 

0 I 
1 . 0  

HOPG : Therma l  D i f fuse  and  
ComDton Sca t te r ing  
along O0 L 

2.0  

Fig. 9. Calculated (TDS + Compton) versus measured background 
scattering under the 00.L ridges, including a small constant 
contribution from multiple scattering. 
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The graphitization factor g (=P1) ~/2 is 0.984 in our 
HOPG sample; this is also the probability of finding 
either face of a layer in a /3 state. The frequency 
of occurrence of/3-/3, t~-/3 and a-t~ contact there- 
by becomes (Maire & M6ring, 1970) g2, 2 g ( 1 - g )  
and ( l - g )  t respectively, with associated spacings 
of 3.354, 3.397 [=(3 .354+3 .44) /2 ]  and 3 .44A,  
respectively. Thus the average spacing is given 
by d = 3 . 3 5 4 g 2 + 3 . 3 9 7 x 2 g ( 1 - g ) + 3 . 4 4 ( 1 - g ) 2 =  
3 .44-0 .086  g = 3.355 A. This spacing is so close to 
the ideal spacing that the difference would not be 
detected in our experiment. If we assume that the 
three spacings are discrete, the variation 82 will be 
given by 82= (3 .354-  d)2g 2 + (3-397-  d) 2 2g(1 - g)2 +A_ 
( 3 . 4 4 -  d)2(1 - g)2 = 0.0037g(1 - g) = 5-5 x 10 -5 
This agrees quite well with our experimental value 
of 82 = (0"008)  2 = 6"4 x 10 -5 A2. On the other hand, 
Maire & M6ring (1970) have shown the inadequacy 
of the above equation in the soft carbons, and there- 
fore assume that the spacings associated with a-/3 
and a - a  contact have a continuous distribution with 
width 8~ (82=0.17)  and 80 (82=0"06) respectively; 
then 82=g(1 -g ) (O .OO37+282)+(1 -g )282 .  If g =  
0 . 9 8 4 ,  82 = 5"8 X 10 -4 A 2 which is roughly an order of 
magnitude greater than the experimental value. For 
our nearly perfect graphite samples, a discrete spacing 
for the (occasional) defective layer, rather than a 
distributed set, seems therefore most appropriate. 

The value of 8 = 0.008/~ is, as mentioned earlier, 
very small, being almost two orders of magnitude 
smaller than the c-axis root mean square thermal 
amplitude. Its detectability, however, with standard 
X-ray apparatus,  is quite acceptable and provides 
insight into the limits available for layer-defect effects. 
In the intercalated sample of Fig. 1(c) the effects are 
more pronounced but are almost certainly compli- 
cated by stage mixing. We are therefore studying an 
intercalated single crystal in which T defects do not 
(initially) exist, in order to sort out the two contribu- 
tions. 

Finally, we note that HOPG is obtained by heat 
treatment of massive pyrolytic graphite (Moore, 

1973). The starting material consists mainly of c~a 
layers in which both faces have protruding carbon 
atoms. In the process of heat treatment, the a state 
is transformed into a/3 state leading to a more ordered 
structure with some a states, or T defects, persisting 
in the final product. It is in a sense gratifying to be 
able to proceed with a consistent description of the 
structure of  these synthetic graphites from the most 
disordered state to a more nearly perfect state in 
which, despite the apparent perfection of HOPG, an 
average substack of only - 1 1 0  ~ seems to prevail in 
our sample. 

We thank Dr A. W. Moore for our HOPG sample. 
Professor H. Zabel and Mr P. Chow collaborated in 
the collection of the data in Fig. 1 and we thank them 
for many discussions of these experiments. Early 
observations of wings in Rb-intercalated HOPG were 
also made by C. Thompson as part of her PhD 
research (in progress) at the University of Houston. 
This research was supported by the NSF with Grant 
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